

Journal of Organometallic Chemistry 579 (1999) 206-210

Journal ofOrgano metallic Chemistry

Synthesis of gold-(I) and -(III) complexes with diferrocenylphenylphosphine (PFc₂Ph). Crystal structure of $[Au(PFc_2Ph)_2]ClO_4$

M. Concepción Gimeno^a, Peter G. Jones^b, Antonio Laguna^{a,*}, Cristina Sarroca^a

^a Departamento de Química Inorgánica, ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain ^b Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329, D-38023 Braunschweig, Germany

Received 21 September 1998; received in revised form 5 December 1998

Abstract

Diferrocenylphenylphosphine (PFc₂Ph) reacts with gold(I) derivatives to afford neutral, [AuR(PFc₂Ph)] (R = Cl, C₆F₅) or cationic complexes, [Au(PFc₂Ph)(PR₃)]ClO₄ (PR₃ = PFc₂Ph, PPh₃). Reaction with [Au(C₆F₅)₃(OEt₂)] or [Au(C₆F₅)₂Cl]₂ gives the gold(III) complexes [Au(C₆F₅)₃(PFc₂Ph)] or [Au(C₆F₅)₂Cl(PFc₂Ph)], respectively. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Gold; Ferrocene; Diferrocenylphenylphosphine

1. Introduction

The chemistry of ferrocene and the design of new ligands containing the ferrocene unit, such as the diphosphine 1,1'-bis(diphenylphosphino)ferrocene, have been widely studied because of the potential applications of such products in fields such as organic synthesis, homogeneous catalysis, material chemistry and the production of fine chemicals [1,2]. However, the monophosphine diferrocenylphenylphosphine (PFc₂Ph) [3] has scarcely been studied. Only a few complexes, such as [M- $(CO)_5(PFc_2Ph)$] (M = Mo or W), [CoMe-(DH)_2(PFc_2-Ph)] (DH = dimethylglioximate), $[Ni(acac)_2(PFc_2Ph)]$ [4], $[Ag(TfO)(PFc_2Ph)(PR_3)]$ (TfO = trifluoromethanesulfonate; $PR_3 = PFc_2Ph$, PPh₂Me, PPh₃), $[Ag(PFc_2Ph)_2(dptpm)]TfO$ (dptpm = bis(diph-enylthiophosphoryl)methane), [Ag(S₂CNEt₂) (PFc₂-Ph)₂] [5], or the gold derivatives [AuCl(PFc₂Ph)] [6], or more recently, [Au(PFc₂Ph)₂]PF₆ [7], have been reported.

Here we report on the synthesis of mononuclear gold(I) or gold(III) complexes with diferrocenylphenylphosphine as ligand.

2. Results and discussion

Treatment of equimolecular amounts of [AuR(tht)] (R = Cl or C₆F₅, tht = tetrahydrothiophene) with diferrocenylphenylphosphine (PFc₂Ph) in dichloromethane affords the neutral complexes [AuR(PFc₂Ph)] [R = Cl (1), C₆F₅ (2)] (Scheme 1). Compounds 1 and 2 are moisture- and air-stable yellow solids. They behave as non-conductors in acetone solution. In the IR spectrum, the C₆F₅ group (2) gives rise to strong absorptions at 1505, 955 and 790 cm⁻¹; v(Au–Cl) (1) appears at 336 cm⁻¹. In the positive ion liquid secondary ion mass spectra (LSIMS) of both complexes, the most intense peak corresponds to the molecular fragment [AuR(PFc₂Ph)]⁺ [m/z = 710 (1) and 842 (2)]. For complex 1 the peak assigned to [Au(PFc₂Ph)]⁺ [m/z = 675(17%)] is also present.

^{*} Corresponding author. Tel.: + 34-976-761-185; fax: + 34-976-761-187.

E-mail address: alaguna@posta.unizar.es (A. Laguna)

Scheme 1. (i) [AuR(tht)], (ii) $1/2[Au(tht)_2]ClO_4$, (iii) $[Au(OClO_3)(PPh_3)]$, (iv) $[Au(C_6F_5)_3(OEt_2)]$, (v) $1/2 [Au(C_6F_5)_2Cl]_2$

The ¹H-NMR spectra show the expected four resonances for the four diastereotopic $P(C_5H_4)$ protons [4.50, 4.48, 4.46 and 4.22 (1) and 4.46, 4.43, 4.42 and 4.18 ppm (2)] and a singlet for the C_5H_5 rings [4.18 (1) and 4.22 ppm (2)]. The ³¹P{¹H}-NMR spectra show a singlet (23.8 ppm) and a multiplet (32.7 ppm), arising from the coupling with the fluorine atoms, for complexes 1 and 2, respectively. The ¹⁹F-NMR spectrum of 2 presents two multiplets at -116.5 and -162.6 ppm and a triplet at -158.9 ppm [J(F-F) = 19.3 Hz], corresponding to the *ortho-, meta-* and *para-*F, respectively.

The reaction of $[Au(tht)_2]ClO_4$ with the phosphine in 1:2 molar ratio gives the cationic complex а $[Au(PFc_2Ph)_2]ClO_4$ (3). Acetone solutions of complex 3 behave as 1:1 electrolytes. The solid IR spectrum presents bands at 1093 (vs, br) and 623 cm⁻¹ (s), arising from ionic ClO_4^- . In the LSIMS⁺ spectrum, the most intense peak corresponds the to fragment $[Au(PFc_2Ph)_2]^+$ [m/z = 1153]. The ¹H-NMR spectrum shows the resonances of the $P(C_5H_4)$ protons at 4.72, 4.68, 4.62 and 4.43 ppm and a singlet for the C_5H_5 rings at 4.23 ppm. The ³¹P{¹H}-NMR spectrum presents a singlet at 37.2 ppm.

The structure of complex **3** was confirmed by an X-ray diffraction analysis. It crystallises in the space group $P\overline{1}$ as a CHCl₃ solvate. The molecule is shown in Fig. 1, with selected bond lengths and angles in Table 1. The bond lengths and angles are very similar to those found for the complex $[Au(PFc_2Ph)_2]PF_6 \cdot CHCl_3$ [7], which appears to be isostructural, although the triclinic cell was presented differently.

The geometry around the gold atom is distorted from linearity with an angle P–Au–P of 169.41(6)°. The Au–P distances are 2.293(2) and 2.301(2) Å, which are significantly longer than the corresponding values of 2.234(2) Å in [AuCl(PFc₂Ph)] [6] but are similar to those found in other bis(phosphine) gold compounds such as [Au(PR₃)₂]⁺ [PR₃ = PPh₂Me, 2.316(4) Å; PCy₃, 2.321(2) Å] [8,9]. This is consistent with the strong mutual *trans* influence of phosphine ligands. There are two shorter intramolecular gold–iron distances of 4.055(1) and 4.073(1) Å associated with the narrower P–Au–P angle.

Fig. 1. The cation of complex 3 in the crystal showing the atom numbering scheme. Radii are arbitrary. H atoms are omitted for clarity.

Table 1 Selected bond lengths (Å) and angles (°) for complex 3

Bond lengths			
Au-P(1)	2.2929(18)	Au-P(2)	2.3005(17)
P(1)-C(11)	1.765(8)	P(1)-C(21)	1.775(7)
P(1)-C(51)	1.813(8)	P(2)–C(31)	1.801(7)
P(2)–C(41)	1.805(7)	P(2)–C(61)	1.807(7)
Bond angles			
P(1)–Au–P(2)	169.41(6)	C(11)–P(1)–C(21)	103.2(3)
C(11)–P(1)–C(51)	105.3(3)	C(21)–P(1)–C(51)	107.3(3)
C(11)–P(1)–Au	119.6(2)	C(21)–P(1)–Au	109.1(2)
C(51)–P(1)–Au	111.4(2)	C(31)–P(2)–C(41)	106.9(3)
C(31)–P(2)–C(61)	106.5(3)	C(41)–P(2)–C(61)	104.1(3)
C(31)–P(2)–Au	107.7(2)	C(41)-P(2)-Au	119.4(2)
C(61)–P(2)–Au	111.6(2)	C(15)–C(11)–P(1)	126.9(6)
C(12)–C(11)–P(1)	125.6(6)	P(1)-C(11)-Fe(1)	134.1(4)
P(1)-C(21)-Fe(2)	124.8(4)	C(32)–C(31)–P(2)	126.6(5)
C(35)–C(31)–P(2)	124.0(5)	P(2)-C(31)-Fe(3)	123.1(4)
C(45)-C(41)-P(2)	125.1(6)	C(42)-C(41)-P(2)	127.3(5)
P(2)-C(41)-Fe(4)	124.1(3)	C(56)–C(51)–P(1)	119.4(6)
C(52)–C(51)–P(1)	121.5(6)	C(62)–C(61)–P(2)	121.4(5)
C(66)–C(61)–P(2)	119.7(5)		

The cyclopentadienyl rings within each ferrocenyl unit are almost eclipsed, as expressed by the torsion angles C-center-center-C of 13, 10, 5 and 5° for Fe1, Fe2, Fe3 and Fe4, respectively, around the Cp···Cp axis. The C-P-Au angles for the ferrocenyl-C atoms are significantly different from each other, as has been previously observed in the two diferrocenylphenylphosphino-gold complexes reported [6,7]. These angles vary from 109.1(2)° for C(21)–P(1)–Au to 119.6(2)° for C(21)–P(1)–Au and from 107.7(2)° for C(31)–P(2)–Au to 119.4(2)° for C(41)–P(2)–Au. This large angular difference has been associated [7] with the short intramolecular interactions between the ferrocenyl ring carbon atoms and the phenyl ring hydrogen atoms, e.g. C(21)···H(52) 2.69 Å, C(31)···H(62) 2.77 Å.

The reaction of equimolar amounts of $[Au(OClO_3)(PPh_3)]$ and the phosphine leads to the complex $[Au(PFc_2Ph)(PPh_3)]ClO_4$ (4). However, in solution, complex 4 is in equilibrium with the homoleptic species $[Au(PFc_2Ph)_2]^+$ (3) and $[Au(PPh_3)_2]^+$. Thus, the ³¹P{¹H}-NMR spectrum presents resonances from the three complexes: a singlet at 37.2 ppm, from complex 3; a singlet at 45.4 ppm, from $[Au(PPh_3)_2]^+$; and four resonances, corresponding to an AB system $[\delta(PFc_2Ph) = 38.1, \delta(PPh_3) = 45.1 \text{ ppm}, J(AB) = 342.3$ Hz] assigned to complex 4. In the LSIMS⁺ mass spectrum, the most intense peak corresponds to the cation molecular peak $[Au(PFc_2Ph)(PPh_3)]^+$ [m/z =937]. Additionally, other fragments correspond to $[Au(PFc_2Ph)_2]^+$ (1153, 10%) and $[Au(PPh_3)_2]^+$ (721, 60%).

Diferrocenylphenylphosphine reacts with $[Au(C_6F_5)_3-(OEt_2)]$ or $[Au(C_6F_5)_2Cl]_2$, in molar ratio 1:1 or 2:1,

respectively, to give the gold(III) complexes $[Au(C_6F_5)_3(PFc_2Ph)]$ (5) or $[Au(C_6F_5)_2Cl(PFc_2Ph)]$ (6). Complexes 5 and 6 are white solids, moisture- and air-stable. They are non-conductors in acetone solutions. Their IR spectra show bands at 1507(s), 969(s), 820(m) and 792(m) (5) and 1513(s), 1506(s), 969(s), 807(m) and 788(m) cm⁻¹, corresponding to the C_6F_5 groups; v(Au-Cl) appears at 337(m) cm⁻¹ (complex 6). In the LSIMS⁺ mass spectra of both complexes, the molecular peak $[M]^+$ [m/z = 1176 (42) (1) and 1044 (42%) (2)] is present. The peak assigned to $[Au(C_6F_5)(PFc_2Ph)]^+$ [m/z = 842 (7, 5) (11%, 6)] is also present.

The complexes **5** and **6** were readily characterised by ¹H-, ¹⁹F- and ³¹P{¹H}-NMR. Their ³¹P{¹H}-NMR spectra show a singlet at 12.2 (**5**) and 23.2 ppm (**6**). The ¹⁹F-NMR spectra show the presence of two different types of pentafluorophenyl groups (with a 2:1 intensity ratio for complex **5**), which confirms the mutually *cis* position in complex **6** (see Section 3).

3. Experimental

IR spectra were recorded in the range 4000-200 cm⁻¹ on a Perkin–Elmer 883 spectrophotometer using Nujol mulls between polyethylene sheets. Conductivities were measured in ca. 5×10^{-4} mol dm⁻³ solutions with a Philips 9509 conductimeter. C and H analyses were carried out with a Perkin-Elmer 2400 microanalyzer. Mass spectra were recorded on a VG Autospec, with the LSIMS technique, using nitrobenzyl alcohol as matrix. NMR spectra were recorded on a Varian Unity 300 spectrometer and a Bruker ARX 300 spectrometer in CDCl₃. Chemical shifts are cited relative to SiMe₄ (1H, external), CFCl₃ (19F, external) and 85% H₃PO₄ (³¹P, external). The starting materials PFc₂Ph [3], [Au-Cl(tht)] [10], $[Au(C_6F_5)(tht)]$ [10], $[Au(tht)_2]ClO_4$ [11] $[Au(C_6F_5)_3(OEt_2)]$ [12] and $[Au(C_6F_5)_2Cl]_2$ [13], were prepared by published procedures. [Au(OClO₃)(PPh₃)] was prepared from [AuCl(PPh₃)] [14] and AgClO₄.

3.1. Syntheses

3.1.1. $[AuR(PFc_2Ph)] [R = Cl (1), C_6F_5 (2)]$

To a solution of PFc₂Ph (0.048 g, 0.1 mmol) in dichloromethane (20 cm³), [AuCl(tht)] (0.032 g, 0.1 mmol) or $[Au(C_6F_5)(tht)]$ (0.045 g, 0.1 mmol) were added and the mixture was stirred for 2 h. The solution was concentrated to ca. 5 cm³ and addition of diethyl ether (15 cm^3) gave complexes 1 or 2 as yellow solids. Complex Yield Calc. for 1: 56%. Anal. C₂₆H₂₃AuClFe₂P: C, 43.95; H, 3.25. Found: C, 43.65, H, 3.2; $\Lambda_{\rm M}$ 12 Ω^{-1} cm² mol⁻¹. Complex 2: Yield 66%, Anal. Calc. for C₃₂H₂₃AuF₅Fe₂P: C, 45.65; H, 2.75. Found: C, 45.35, H, 2.8; $\Lambda_{\rm M}$ 9 Ω^{-1} cm² mol⁻¹.

3.1.2. $[Au(PFc_2Ph)_2]ClO_4$ (3)

To a solution of PFc₂Ph (0.096 g, 0.2 mmol) in dichloromethane (20 cm³), [Au(tht)₂]ClO₄ (0.047 g, 0.1 mmol) was added and the mixture was stirred for 2 h. The solution was concentrated to ca. 5 cm³ and addition of diethyl ether (15 cm³) gave complex **3** as a yellow solid. Yield 92%, Anal. Calc. for $C_{52}H_{46}AuClFe_4O_4P_2$: C, 49.95; H, 3.7. Found: C, 50.35, H, 3.7; Λ_M 115 Ω^{-1} cm² mol⁻¹.

3.1.3. $[Au(PFc_2Ph)(PPh_3)]ClO_4$ (4)

To a solution of [Au(OClO₃)(PPh₃)] (0.104 g, 0.1 mmol) in dichloromethane (20 cm³), PFc₂Ph (0.048 g, 0.1 mmol) was added and the mixture was stirred for 15 min. The solution was concentrated to ca. 5 cm³ and addition of diethyl ether (15 cm^3) gave complex 4 as a vellow solid. Yield 72%, Anal. Calc. for C44H38AuClFe2O4P2: C, 50.95; H, 3.7. Found: C, 50.65, H, 3.75; $\Lambda_{\rm M}$ 115 Ω⁻¹ cm² mol⁻¹, ¹H-NMR, δ ppm: 7.6 (m, 20H, Ph), 4.57, 4.21 and 4.00 [m, 6H, $P(C_5H_4)$] and 4.08 [m, 12H, 2H of $P(C_5H_4)$ and 10H of C_5H_5]. There are also present the resonances due to complex 3 and $[Au(PPh_3)_2]ClO_4.$

3.1.4. $[Au(C_6F_5)_3(PFc_2Ph)]$ (5) and $[Au(C_6F_5)_2Cl(PFc_2Ph)]$ (6)

To a dichloromethane solution (20 cm³) of PFc₂Ph $(0.048 \text{ g}, 0.1 \text{ mmol}), [Au(C_6F_5)_3(OEt_2)] (0.077 \text{ g}, 0.1)$ mmol) or $[Au(C_6F_5)_2Cl]_2$ (0.042 g, 0.05 mmol) were added. The mixture was stirred for 1 h and then the solution was concentrated under vacuum to ca. 5 cm³; addition of hexane (15 cm³) afforded complexes 5 or 6 as a pale orange or orange solid, respectively. Complex 5: Yield 55%, Anal. Calc. for $C_{44}H_{23}AuF_{15}Fe_2P$: C, 44.95; H, 1.95. Found: C, 44.95, H, 2.0; $\Lambda_{\rm M}$ 9 Ω^{-1} cm² mol⁻¹. ¹H-NMR, δ ppm: 7.5 (m, 5H, Ph), 4.50, 4.52 and 4.05 [m, 8H, P(C₆H₄)] and 4.09 (s, 10 H, C₅H₅). ¹⁹F-NMR, δ ppm: -119.3 (m, 4F, F_o), -121.6 (m, 2F, F_o), -157.8 [t, 1F, F_p, J(F–F) 19.3 Hz], -157.9 [t, 2F, F_p , J(F-F) 20.67 Hz], -161.3 (m, 4F, F_m) and -161.62 (m, 2F, F_m). Complex 6: Yield 60%, Anal. Calc. for C₃₈H₂₃AuClF₁₀Fe₂P: C, 43.7; H, 2.2. Found: C, 43.35, H, 2.1; $\Lambda_{\rm M}$ 12 Ω^{-1} cm² mol⁻¹. ¹H-NMR, δ ppm: 7.5 (m, 5H, Ph), 4.67, 4.62, 4.55 and 4.53 [m, 8H, $P(C_6H_4)$] and 4.32 (s, 10 H, C_5H_5). ¹⁹F-NMR, δ ppm: -120.3 (m, 2F, F_o), -123.1 (m, 2F, F_o), -157.4 [t, 1F, F_p, J(F-F) 19.97 Hz], -158.0 [t, 1F, F_p, J(F-F) 19.97 Hz], -160.8 (m, 2F, F_m) and -161.5 (m, 2F, F_{*m*}).

3.2. Crystal structure determination of complex 3

3.2.1. Crystal data

3·CH₂Cl₂, C₅₃H₄₈AuCl₃Fe₄O₄P₂, $M_r = 1337.57$, triclinic, space group $P\overline{1}$, a = 10.367(2), b = 11.422(2), c = 22.724(3) Å, $\alpha = 98.548(8)^\circ$, $\beta = 93.759(12)^\circ$, $\gamma =$

111.475(10)°, V = 2454.9(6) Å³, Z = 4, $D_{calc.} = 1.810$ Mg m⁻³, λ (Mo-K_{α}) = 0.71073 Å, μ = 4.41 mm⁻¹, F(000) = 1324, T = -100°C.

3.2.2. Data collection and reduction

Single crystals were obtained by slow diffusion of hexane into a chloroform solution of complex **3**. A yellow plate $0.80 \times 0.20 \times 0.15$ mm³ was used to collect 14 113 intensities to $2\theta_{\text{max}}$ 50° (Siemens P4 diffractometer, monochromated Mo-K_{α} radiation) of which 8545 were independent ($R_{\text{int}} = 0.049$). Cell constants were refined from 2θ values of 65 reflections in the range 10.6–25°. An absorption correction was applied on the basis of ψ -scans (transmission factors 0.90–0.98).

3.2.3. Structure solution and refinement

The structure was solved by the heavy atom method and refined on F^2 using the program SHELXL-93 [15]. All non-hydrogen atoms were refined anisotropically. Refinement proceeded to wR (F^2) 0.102 for 8542 reflections, 599 parameters and 534 restraints (to local ring symmetry and light atom displacement factors), with conventional R(F) 0.0429, $S(F^2)$ 1.03, max. $\Delta \rho = 1.57$ e Å⁻³.

4. Supplementary material

Complete crystallographic data (excluding structure factors) have been deposited at the Cambridge Crystallographic Data Centre under the number CCDC-103032. Copies can be obtained free of charge from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam. ac.uk).

Acknowledgements

The authors thank the Dirección General de Investigación Científica y Técnica (No. PB97-1010-C02-01) and the Fonds der Chemischen Industrie for financial support.

References

- A. Togni, T. Hayashi (Eds.), Ferrocenes. Homogeneous Catalysis, Organic Synthesis and Materials Science, VCH, Weinheim, 1995 (and references cited therein).
- [2] See for example (a) W.R. Cullen, J.D. Woollins, Coord. Chem. Rev. 39 (1982) 1. (b) T. Hayashi, M. Kumada, Acc. Chem. Res. 15 (1982) 395.
- [3] G.P. Sollot, H.E. Mertwoy, S. Portnoy, J.L. Snead, J. Org. Chem. 28 (1963) 1090.
- [4] J.C. Kotz, C.L. Nivert, J. Organomet. Chem. 52 (1973) 387.

- [5] M.C. Gimeno, P.G. Jones, A. Laguna, C. Sarroca, Polyhedron 17 (1998) 3681.
- [6] P.G. Jones, C. Freire Erdbrügger, R. Hohbein, E. Schwarzmann, Acta Crystallogr. C44 (1988) 1302.
- [7] T.E. Müller, J.C. Green, D.M.P. Mingos, C.M. MacPartlin, C. Whittingham, D.J. Williams, T.M. Woodroffe, J. Organomet. Chem. 551 (1998) 313.
- [8] J.J. Guy, P.G. Jones, G.M. Sheldrick, Acta Crystallogr. B32 (1976) 1937.
- [9] J.A. Muir, M.M. Muir, L.B. Pulgar, P.F. Jones, G.M. Sheldrick, Acta Crystallogr. C41 (1985) 1174.
- [10] R. Usón, A. Laguna, M. Laguna, Inorg. Synth. 26 (1989) 85.
- [11] R. Usón, A. Laguna, M. Laguna, J. Jiménez, M.P. Gómez, A. Sanz, J. Chem. Soc. Dalton Trans. (1990) 3457.
- [12] R. Usón, A. Laguna, M. Laguna, J. Jiménez, E. Durana, Inorg. Chim. Acta 168 (1990) 89.
- [13] R. Usón, A. Laguna, M. Laguna, M. Abad, J. Organomet. Chem. 249 (1983) 437.
- [14] R. Usón, A. Laguna, Inorg. Synth. 21 (1982) 71.
- [15] G.M. Sheldrick, SHELXL-93. A program for crystal structure refinement, University of Göttingen, 1993.